

U.S. Army School of Aviation Medicine

Aviation Toxicology

UNCLASSIFIED

- ACTION: Identify the toxic hazards in the aviation environment
- CONDITION: While serving as an aircrew member
- STANDARD: IAW TC 3-04.93, AR 50-5, AR 50-6 and Fundamentals of Aerospace Medicine

- Risk Assessment: Low
- Environmental Considerations: None
- Safety Considerations: None
- Evaluation: 50 Question exam at the end of Aeromedical Training at USASAM

- ACTION: Identify the elements of an Occupational Health Program in Army Aviation
- CONDITION: Given a list
- STANDARD: IAW TC 3-04.93, Fundamentals of Aerospace Medicine, and Occupational Health in Aviation

- Occupational Medicine is an essential component of the Army Aviation Medicine Program
- To prevent and solve problems involving potential toxic hazards in the aviation environment
- Hippocrates (400 B.C.)
 - First to describe the relationship between work and illness
 - First discussed principles of toxicology during research to control the absorption of a compound to prevent overdose

History of Occupational Medicine in Aviation

*All substances are poisons; there is none which is not a poison. The right dose differentiates a poison from a remedy."

-Paracelsus (16th Century)

Bernardino Ramazzini's book "De Morbis Artificum" described numerous diseases caused by exposure to toxins in the work environment; some of which have undergone very little revision over the past 200 years

History of Occupational Medicine in Aviation

- First fuel used was a castor oil mix for lubrication
- Front positioned engine caused a continual mist of castor oil to be sprayed across the pilot's face
- Aviators wore long scarves to wipe mist from their goggles and cover their mouths & noses
- What did the ingested/inhaled castor oil do to the aviator?

UNCLASSIFIED

History of Occupational Medicine in Aviation

- Currently more than 1
 million personnel work
 in the aerospace
 environment
- Each of these
 occupations is exposed
 to toxicological hazards
 that are unique to their
 occupation

Check On Learning

- Who was the first to describe the relationship between work and illness?
 - ▶ Hippocrates (400 B.C.)
- What was the first fuel used in aviation?
 - Castor oil mix

- ACTION: Match the terms with the correct definitions relating to toxicology
- CONDITION: Given a list of terms and a list of definitions
- STANDARDS: IAW TC 3-04.93 and Fundamentals of Aerospace Medicine

Terms & Definitions

- Occupational Hazard
 - Anything capable of producing an adverse health or safety effect on an individual
- Toxicology
 - ▶ The scientific study of poisons
- Exposure
 - The actual contact of the harmful substance with the biological organism

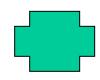
Types of Exposure:

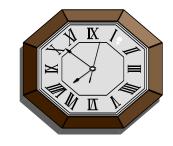
- Acute Exposure
 - Exposure to an agent over a short period of time that causes adverse health effects
- Chronic Exposure
 - A long-term exposure to an agent or a series of repeated exposures to an agent that may eventually lead to adverse health changes

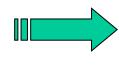
- Threshold Limit Values (TLV)
 - Concentrations of a chemical that will produce no effects to individuals who are exposed for 8 hours a day
- Short Term Exposure Limits (TLV-STEL)
 - Concentration of chemicals that are allowed for exposure times of 15 minutes during the work day
- Ceiling Concentration (TLV-C)
 - Concentration of a chemical that must never be exceeded during any part of the workday

- What is the definition of a hazard?
 - Anything capable of producing an adverse health effect (injury or illness)
- What are two types of exposures?
 - Acute and chronic

- ACTION: Match the aviation toxicology principle with its definitions
- CONDITION: Given a list of terms and definitions
- STANDARD: IAW TC 3-04.93 and Fundamentals of Aerospace Medicine




- Time and Dose
- Route of Entry
- Rate of Retention and Excretion
- Physiological Effects
- Physiochemical
- Environmental


- Time and Dose
 - Toxin effects depend on the amount and duration of exposure
- Route of Entry
 - Ways a toxin can enter the body
 - Inhalation
 - Ingestion

Toxicology Principles – Route of Entry

- Inhalation
 - Most likely method of getting a toxin into the body in the flight environment

Toxicology Principles – Route of Entry

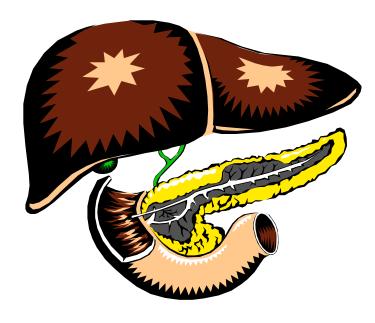
- Ingestion
 - Involves taking a toxin orally
 - Smoking, eating, or drinking in the work area without adequate precautions is the primary means of exposure

Toxicology Principles – Route of Entry

- Absorption
 - Involves movement of a toxin through the skin
 - Prolonged contact with most petroleum, oils, lubricants (POLs) may allow for dermal absorption

Physical handling of a toxic product is not the only method of absorption

Fuel contaminated clothing



- Rate of Retention and Excretion
 - Retention
 - How long a toxin will remain in the body
 - Toxins with high retention rates: lead, DDT, Asbestos, Beryllium
 - Excretion
 - How quickly the body rids itself of the toxin
 - This is usually through which organs?

- Physiological Effects
 - Individual variables that determine the response to a toxin
 - Metabolism
 - Age
 - Concurrent medication
 - Body fat
 - Determines the effect fat soluble toxins have on the body
 - Genetics
 - Ethnic group
 - Sex

- Physiochemical
 - Biochemical process of detoxifying chemicals within the body

UNCLASSIFIED

- Environmental
 - Toxicity may be affected by:
 - Atmospheric pressure
 - Temperature
 - Humidity

Toxicology Principles - Environmental

- Atmospheric pressure
 - FAA studies show that hazardous fumes become more toxic at higher altitudes

Toxicology Principles - Environmental

- Temperature
 - Toxic agents are less problematic in the winter than summer due to the larger vaporization of volatile chemicals in warmer temperatures

Toxicology Principles - Environmental

Humidity

Chemicals are more rapidly absorbed through wet (perspiration) skin than cool dry skin

Check On Learning

- What are the three routes a toxin can enter the body?
 - Inhalation, skin (absorption), and ingestion
- Which two organs are responsible for excretion?
 - Kidneys and liver

- ACTION: Match the aviation toxic substance with its hazard
- CONDITION: Given a list of aviation toxic substances and a list of hazards
- ◆ STANDARD: IAW TC 3-04.93, AR 50-5, and AR 50-6

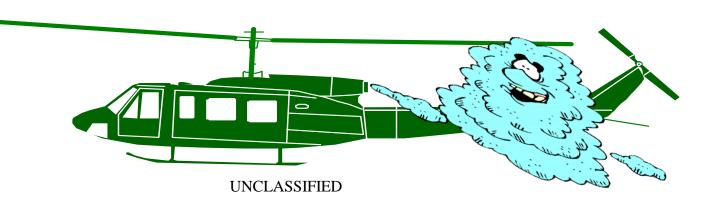
Toxic Substance Overview

- Aviation fuels and fuel combustion products
- Solvents and degreasers
- Lubricants
- Hydraulic fluids
- Fire extinguishers
- Composites and plastics

- Aviation fuels
 - Combination of multiple (>20) petroleum products
 - Principal hazard is vapor inhalation
 - Known carcinogens:
 - Toluene
 - Xylene
 - Benzene
 - Naphthalene
 - Army jet engines use JP-8
 - Kerosene (principal agent)
 - Flash point of 100 F°

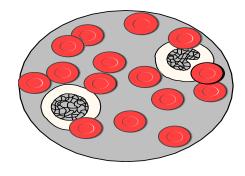
Aviation Fuel Symptoms of Acute Exposure

- Neurological symptoms:
 - Light-headedness
 - Confusion
 - Fatigue
 - Coma
 - Slurred speech
 - Impaired psychomotor

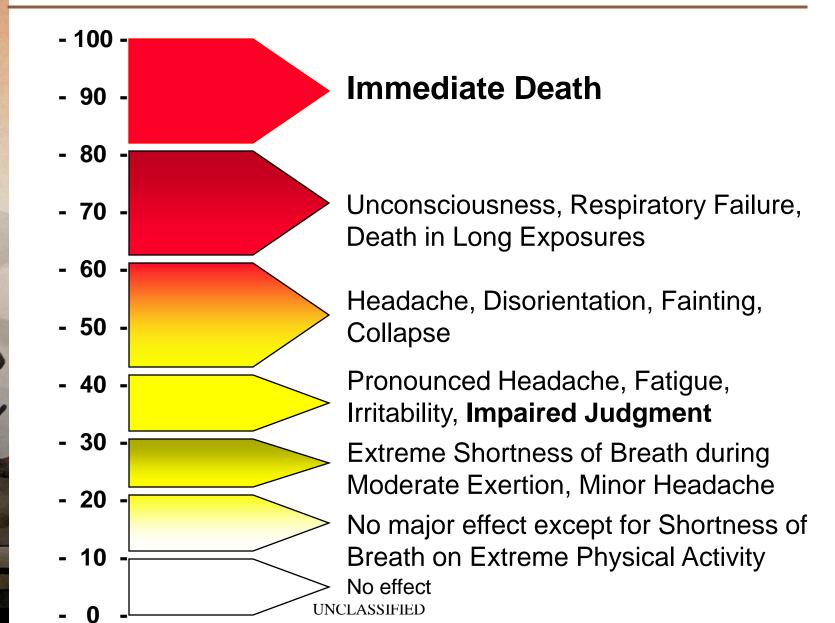

- Skin symptoms:
 - Chemical burns
 - Irritation due to the drying effect

- Gastrointestinal symptoms:
 - Nausea
 - Vomiting
 - Easily absorbed through mouth

- Cardiac and Respiratory symptoms:
 - Irregular heart beats
 - Respiratory failure
 - Coughing
 - Choking
 - Wheezing



- Aviation fuel combustion
 - Carbon Monoxide
 - One of the most common and toxic of substances in the aviation environment
 - Low concentrations over time can produce high blood concentration



- Carbon Monoxide
 - Most common cause of fatal poisonings in USA
 - Product of incomplete combustion
 - CO is a colorless, odorless gas
 - Inhaling 0.5% CO for 30 minutes = blood concentration of 45%
 - As little as 10% concentration of CO in the blood can decrease peripheral and night visual acuity
 - About 50% removed from the blood every 4 hours

Carbon Monoxide (Symptoms)

- Solvents and degreasers
 - Organic bases used to dissolve other petroleum products (water, lipid):
 - Toluene Isocyante an additive to paints, foams, and adhesives
 - Trichloroethylene (TCE) used in aircraft maintenance as solvent or degreasing agent
 - Methyl-ethyl-ketone (MEK) solvent specified by the maintenance manual

- Lubricants
 - Substances that reduce friction
 - Located in engine, APU, transmission, and gear boxes
 - When exposed to hot surfaces an inhalation hazard is produced with symptoms similar to CO
 - Skin contact causes a dermatitis reaction

- Hydraulic fluids
 - Petrolatum, castor oil, silicon, or phosphate based
 - Maintained under high pressure and a small leak can produce a finely aerosolized mist in the cockpit
 - Fine mist can impair vision and act as an irritant
 - ▶ Large leak can cause pooling in the cockpit
 - Inhalation can irritate the lungs

Aviation Toxic Substance

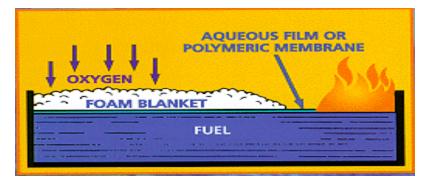
- Fire extinguishers
 - A threat when operated in an enclosed or open environment
 - ▶ Inhalation is the primary threat
- Three types
 - Halon
 - Carbon Dioxide

Aqueous Film Forming Foam

Halon

- Liquefied, compressed gas that chemically interrupts combustion
- Non-toxic unless discharged within an enclosed space
- Decomposes into hydrogen fluoride, chloride, bromide and phosgene

- Carbon Dioxide
 - Safe, large quantities needed
 - Heavier than air
 - ▶ In low concentrations (< 2%) acts as a respiratory stimulant
 - ▶ High concentration (2-5%), drowsiness, headache, respiratory and loss of concentration
 - ▶ At 10% or above, collapse, LOC, and death can occur



UNCLASSIFIED

- Aqueous Film Forming Foam (A.F.F.F.)
 - Combination of fluorochemical and hydrocarbon surfactants
 - Relatively nontoxic detergent
 - The concentrated foam is harsh and can irritate the skin

UNCLASSIFIED

Aviation Toxic Substance

- Composite and plastics
 - Composed of a number of components which give:
 - Strength
 - Thermal resistance
 - Light-weight
 - ▶ Composed of:
 - Resins
 - Fibers
 - Solvents

- Fibers
 - Include:
 - Graphite
 - Boron
 - Kevlar
 - Fiberglass

- Problems occur during:
 - Crash
 - Working
 - Burning
 - Sanding/scraping
- Primary hazard is inhalation of particles < 3.5 micrometers</p>
- Asbestos-like reactions may occur

Composites and Plastics

- Resins
 - Bonding agents that hold the fibers in a matrix
 - Bonding agents composed of:
 - Epoxy
 - Polyurethane
 - Phenol
 - Amino resins
 - Primary hazard is inhalation due to thermal release of toluene diisocyantes or methylene dianiline (MDA) fumes

Composites and Plastics Plastics

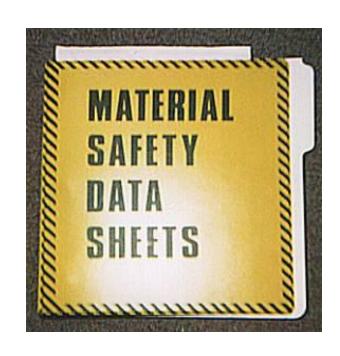
- Polyurethane used in cockpit/cabin interiors and fluorocarbon plastics used in wiring insulation and corrosion resistant coating
- Primary hazard is inhalation during decomposition which may release:
 - Cyanide
 - Fluorine gas
 - Phosgene

Check On Learning

- What toxic substances could you be exposed to in aviation?
 - Aviation fuels and their combustion products, composites, plastics, solvents, degreasers, lubricants, hydraulic fluids, and fire extinguishing chemicals

- ACTION: Identify protective measures to prevent or reduce toxic substance exposure
- CONDITION: Given a list
- ◆ STANDARD: IAW TC 3-04.93, AR 50-5, and AR 50-6

- Individual
 - Prevent contamination of your AACU / NOMEX flight suits
 - Smoke and eat only in authorized areas
 - Hand washing decreases risk of ingesting a toxin
 - Wear personal protective equipment (PPE)
 - Pay attention to your physical symptoms:
 - Headache
 - Burning eyes
 - Choking
 - Nausea
 - Skin irritation


Protective Measures

- Cockpit
 - Be aware of the potential for toxic exposure in flight
 - Smoke and fumes are a very serious matter
 - Take immediate action:
 - Ventilate
 - Descend
 - Land
 - Evacuate the aircraft
 - Seek medical evaluation

General

- Be aware of the potential for toxic exposure in the aviation environment
- Be aware of the hazardous material in your work area
- Develop and rehearse evacuation plan


- What type of combustion forms Carbon Monoxide?
 - Incomplete
- When might fire extinguishers using Halon or Carbon Dioxide be toxic?
 - ▶ In a confined or enclosed space

- Toxicology terms and definitions
- Toxicology principles
- Toxic substances in aviation
- Protective measures

Conclusion

UNCLASSIFIED